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An inert solute is convected by a steady random velocity field, which is associated 
with flow through a heterogeneous porous formation. The log conductivity and the 
velocity are stationary random space functions. The log conductivity Y is assumed 
to be normal, with an isotropic two-point correlation of variance u& and of finite 
integral scale I .  The solute cloud is of a finite input zone of lengthscale 1. The 
transport is characterized with the aid of the spatial moments of the solute body. The 
effective dispersion coefficient is defined as half of the rate of change with time of the 
second spatial moment with respect to the centroid. Under the ergodic hypothesis, 
which is bound to be satisfied for 111 % 1, the centroid moves with the mean velocity 
U and the longitudinal dispersion coefficient 9L tends to its constant, Fickian, limit. 
Under a Lagrangian first-order analysis in 

This study addresses the computation of the effective longitudinal dispersion 
coefficient for a finite input zone, for which ergodic conditions may not be satisfied. 
In this case the centroid trajectory and the second spatial moments are random 
variables. In line with a previous work (Dagan 1990) the effective dispersion 
coefficient D ,  is defined as half the rate of change of the expected value of the second 
spatial moment for large transport time. The aim of the study is to derive D ,  and its 
dependence upon 111 and in particular to determine the conditions under which i t  
tends to the ergodic limit 9,. The computation is carried out separately for a thin 
body aligned with the mean flow and one transverse to it. In the first case it is found 
that D ,  is equal to zero, i.e. the streamlined body does not disperse in the mean. This 
result is explained by the correlation between the trajectories of the leading and 
trailing edges, respectively, once the latter reaches the position of the first. The 
relatively modest increase of the mean second spatial moment is effectively 
computed. In the case of a thin body initially transverse to the mean flow, D ,  may 
reach the ergodic limit 9, for a ratio 1/I of the order lo2. For smaller values, D ,  is 
found to be bounded from above, and its maximum depends on 1 but not on I .  The 
uncertainty caused by the randomness of the velocity field is manifested in the 
trajectory of the centroid rather than in the effective dispersion. 

it has been found that 9, = (r; UI. 

1. Introduction 
The mechanism of spreading of a solute carried by a fluid in natural porous 

formations is dominated by the large-scale heterogeneity of the formation properties. 
Field studies have shown that the hydraulic conductivity (permeability) K varies in 
an erratic manner in space and its scale of variation, related to the geological non- 
uniform setting, is much larger than the pore scale. Hence, at this scale the fluid 
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motion can be averaged over the pore scale and the continuous velocity field satisfies 
Darcy’s law and the mass conservation equation. Solute particles, large compared to 
the pore scale but small a t  the heterogeneity scale, are convected by the Darcian 
velocity field and diffuse due to  the effect of pore-scale structure. The effect of the 
latter mechanism, coined ‘ hydrodynamic dispersion ’ in the literature, is generally 
small compared to that of large-scale K variations and can be neglected altogether. 
There are exceptional cases, like perfectly stratified formations and flow parallel to 
the bedding (see Matheron & de Marsily 1980 or for generalizations, Bouchaud et al. 
1990) in which pore-scale dispersion plays an important role, bu t  they are not of our 
concern here. Recent field experiments (e.g. Sudicky 1986; Garabedian 1987) confirm 
this picture: the spatial distribution of the solute concentration C is irregular, it 
precludes a deterministic description and the scale of spatial variations is quite large. 
The plumes can at best be characterized by some global measures, the most common 
being the spatial moments of the cloud (mass, centroid, second moment). These 
moments are functions of time and the second one portrays the spreading of the 
solute around the cloud centroid. The velocity fields caused by natural gradients are 
generally steady or slowly varying in time and both field experiments and theory 
indicate that the longitudinal spreading is much stronger than the transverse. 
Effective (or macro) dispersion coefficients and associated dispersivities can be 
defined as half the rate of change of spatial second moments of the plume. 

The main role of the theory is to predict transport for a given heterogeneous 
structure and for given boundary and initial conditions for pressure head and 
concentration. The investigation of transport here is focused on relatively simple 
conditions : K is modelled as a random stationary (homogeneous) space function, the 
flow domain is regarded as unbounded (i.e. the plume is far from boundaries), the 
flow is driven by a constant average pressure-head gradient, the solute is a passive 
scalar, the initial concentration of a finite cloud is constant and only longitudinal 
dispersion is considered. These conditions are satisfied approximately in many field 
cases and our purpose is anyway to discuss some basic issues of transport using only 
simple computations. Still, even under these conditions, prediction of the flow field 
and of concentration is a formidable problem. Its solution has been achieved either 
by numerical methods or by approximate analytical ones. We shall rely here on the 
latter, numerical results serving merely as illustrative simulative experiments. 

We have employed in the past the Lagrangian approach (Dagan 1984, 1987), 
which is well suited to depict the solute-body spatial moments, in order to solve the 
transport problem. The results of the analysis compared favourably with some field 
experiments (e.g. Freyberg 1986). The theory, ether Lagrangian or Eulerian, and its 
application to analysis of field experiments, was underlain by the ergodic hypothesis. 
I n  simple terms it is assumed that the ensemble means of the spatial moments of the 
trajectories of one particle in various realizations of the random heterogeneous 
structure are equal to those of the trajectories of the many particles making up the 
finite solute body in any particular realization. The ergodic hypothesis for the cloud 
spatial moments is bound to  be satisfied if the lengthscale characterizing the size of 
the solute body is much larger than the heterogeneity scale I .  With neglect of the 
effect of pore-scale dispersion, the lengthscale 1 of the initial cloud and its ratio with 
the heterogeneity scale I is the parameters playing the major role. The ergodic 
hypothesis for spatial moments was apparently satisfied for the field experiments 
mentioned above. Indeed, the heterogeneity scales (of the order of centimetres, 
vertically, and of metres, horizontally), related mainly to the local sedimentary 
features of the formations, were small compared to  1. The question has been raised 
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recently (e.g. Philip 1986 and Neuman 1990) about the impact of larger heterogeneity 
scales upon transport. Such scales are encountered for instance, in regional flows 
(Dagan 1986, 1989). Indeed, natural formations are generally shallow and for 
transport distances that are large compared to the thickness, new heterogeneity 
scales, of the vertically averaged conductivity, appear. A t  these scales transport may 
be regarded as two-dimensional in the horizontal plane, with transmissivity 
heterogeneity scales found to be of the order of hundreds to thousands of metres 
(Delhomme 1979; Hoeksema & Kitanidis 1984). The salient question is what is the 
impact of such large scales upon the spatial moments of a solute cloud of size which 
is not large compared to I ,  i.e. for non-ergodic transport Z The aim of the present 
study is to investigate this issue along the lines of Dagan (1990). The plan of the 
paper is as follows: for completeness, we define in the next Section the transport 
problem in mathematical terms and review briefly previous results of the Lagrangian 
analysis under ergodic conditions; in $3  we recall briefly the definition of effective 
longitudinal dispersion coefficient under non-ergodic conditions (Dagan 1990) and 
relate it to the velocity and conductivity fields ; the main original contribution is in 
$4, in which we derive the expressions of the effective dispersion coefficient in terms 
of the conductivity statistical parameters and the initial solute-body size, for two- 
dimensional velocity fields. As a by-product we arrive at  the limiting conditions for 
which ergodicity may be obeyed. The main result is that under non-ergodic 
conditions the controlling lengthscale of the solute-body dispersion is its initial size 
1, rather than the heterogeneity scale I .  

Although the results are derived for transport in heterogeneous porous formations, 
it is believed that they are of interest to other convective transport phenomena by 
steady velocity fluid fields. 

2. Mathematical statement of the problem; ergodic transport by the 
Lagrangian approach 

For the sake of completeness we recall here briefly the mathematical statement of 
the flow and transport problem (for details see for instance Dagan 1989). Flow of an 
incompressible fluid takes place in a domain SZ in the horizontal x,,z,-plane. The 
steady velocity field V(x) satisfies Darcy’s law 

(1)  V=--VH, 

where K(x) is the conductivity (vertically averaged), n is the effective porosity and 
H(x) is the head. In a heterogeneous formation n is generally spatially variable, but 
to a much smaller extent than the conductivity and it is, therefore, assumed to be 
constant. The velocity also obeys the continuity equation 

K 
n 

v.v=o. (2) 
On the boundary aSZ of the domain, H = - J -x ,  where J is a constant vector. The 

conductivity is a random space function and in line with empirical findings 
(Delhomme 1979; Hoeksema & Kitanidis 1984) we assume that it is lognormal and 
stationary. Thus, Y = 1nK is completely characterized by its mean (Y) and by the 
two-point covariance C,(r) = ([Y(x+r)-(Y)] [Y(x)-(Y)]) = c+p,(r), where CT; 
is the variance and py is the auto-correlation. C ,  is assumed to be isotropic, i.e. a 
function of r = (rl, and of finite integral scale I = jr pr(rl, 0) dr,. The domain 51 is of 
a dimension much larger than I ,  such that ergodic arguments about Yare bound to 
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hold. The velocity is a random space function due to the dependence on K, equation 
(1). Its constant mean U = ( V) is given by U = (K,,/n) J and the fluctuation u = 
V -  Uis characterized by the two-point covariance ui,(r) = ( u i ( x + r ) u j ( x ) )  (i ,j  = 1,  
2), as well as by higher-order moments. Deriving the relationship between K,, and uii 
on one hand and the statistical parameters of Y on the other, is one of the central 
problems of flow through heterogeneous formations, to  be briefly discussed below. 

In the Lagrangian approach transport is described in terms of the motion of 
indivisible solute particles which are convected by the fluid. The trajectory is related 
to the velocity field by the kinematic relationship 

where x = X(t ,a)  is the equation of the trajectory of a particle which a t  t = 0 is a t  
x = a.  We have neglected the effect of pore-scale or local heterogeneity, characterized 
by scales much smaller than I, and manifested in a diffusive displacement that 
supplements X. As already mentioned in 5 1, the effect of such a term is negligible for 
the type of heterogeneous structure investigated here and for the transport times of 
interest. The aim of the Lagrangian theory is to determine the statistical moments 
of X, i.e. ( X ) , X , ( t ,  0) = (X,'(t, a )  X;( t ,  a ) ) ,  etc. in terms of the statistical moments of 
V ,  which in turn depend on those of Y.  The solute concentration is related to X 
through the relationship C(x, t )  = (m/n) ~ ( x - X ) ,  where m is the solute mass. From 
this definition i t  is seen that (C) = ( m / n ) f ( x ,  t ) ,  where f is the p.d.f. (probability 
density function) of X .  We concentrate here, however, on characterizing C of a finite 
solute body by its spatial moments. The initial condition is C(x, 0) = Co = const. in 
an initial area A,,  whose lengthscale is 1. The spatial moments are defined as follows : 

M = nCdx = nC,A,; R = - nCxdx = I M 'I 
where M is the total mass of the conservative solute, R is the coordinate of the 
centroid of the cloud and S ,  are second spatial moments, proportional to the 
moments of inertia of the cloud. 

Under ergodic conditions for the spatial moments, supposed to prevail if 1 % I, one 
has R x ( R )  = ti+ Ut, where x = a is the centroid of A,. By the same token, 
#,(t) x (S, ,( t))  = S,(O)+X,(t, 0 ) ,  where the last relationship stems from ensemble 
averaging (4) and replacing X by a+ Ut+X' and R by a+ Ut, respectively. Hence, 
i t  is seen that the one-particle-trajectory statistical moments characterize the solute- 
body spatial moments. The results are simplified considerably for a transport 
distance L = Ut large compared to I. By invoking arguments relying on the central- 
limit theorem one may assume that f ( x ,  t )  becomes Gaussian and completely defined 
by ( X )  and Xii. Furthermore, X , ( t , O ) + 2 g i 3 t ,  where gij  is the tensor of constant 
effective dispersion coefficients, while gi i /U are effective dispersivities. At the large- 
t limit and for ergodic transport, the spatial moments are completely characterized 
by U and gt,. The restricted scope of the theory, which is all that is pursued here, is 
to derive these entities in terms of the statistical parameters of the velocity field and 
of Y. Even this limited objective is a formidable one and i t  can be generally attained 
only by numerical methods. I n  contrast, simple results of an analytical nature can 
be obtained by a first-order approximation in r$. Recent numerical simulations 
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(for instance Valocchi 1990 and Quinodoz & Valocchi 1991 ; see figure 1 )  shows that 
the first-order approximation of X, may be quite accurate for a$ = 0.5 and even 
larger. Again, for the sake of completeness, we review briefly the main results of the 
first-order analysis. 

WithK=exp((Y)+Y')=KGexp(Y') = K G ( l + Y ' +  ...), whereK,=exp((Y))is 
the conductivity geometric mean, and with H = - J .  x + h, the expansion of Darcy's 
law (1) yields a t  first-order in Y' and h 

( 5 )  

where quadratic terms in Y' and h have been neglected. Elimination of u from (5)  and 
(2 )  yields the simplified equation for the head fluctuation 

V=-((J-JY'-Vh) ,  KG i.e. V = - J ,  K G  u = - ( P - V h ) ,  K G  

12 n n 

V2h = J-VY' ( x ~ a ) ;  h = 0 ( Z E a a ) .  (6) 
Without loss of generality, the mean flow is assumed to be in the x1 direction, i.e. 

V(U, 0). Then, the longitudinal velocity covariance ull = O(u$),  resulting from (5) ,  is 
given by 

2u2 aC,,(r) u2 a2C,(r) 
J ar, J2 art * 

ull(r) = VC, ( r )+ - - - - -  (7)  

In (7), C y H ( r )  = (Y ' (x+r )h(x ) )  and C,(r) = ( h ( x + r ) h ( x ) )  are logconductivity 
and head covariances, respectively, and they can be evaluated with the aid of (6). 
Indeed, multiplying (6) by Y'(x + I) and by h(x + r ) ,  leads to differential equations for 
C,, and C,, respectively. Explicit expressions for C,, and C ,  for an exponential C ,  
are given in Dagan (1989), while those for us, were derived by Rubin (1990). The 
following general relationships are of interest here : 

C,, = aC,/ar, = 0 for rl = 0;  C,, = 0, VC, = 0 for r+m. 

Under the same linearized approximation, the trajectory X, solution of (3), and the 
covariance X,,, are given by 

x( t ,a )  = u+Ut+ 

Xll(t, 0) = r 1 ull(Ut', Ut") dt' 
0 0  

the approximation being that the actual trajectory in the argument of u (3), is 
replaced by its mean. This approximation is consistent with the linearization of the 
flow equations ( 5 ) ,  both implying neglection of terms O(u4y) in various covariances. 

X,,(t, 0) --f 2t low ull(Ut', 0) dt' = - ull(rl, 0) dr,. 

For large tU/I ,X, ,  tends to the 'Fickian' limit 

(9) 

Finally, from (7) and (9) and with the aforementioned properties of C,, and C,, 

2t * do 
we arrive at  the result 

9-9 - ,, =---- i2'- ~ ~ ~ u l l ( r l , O ) d r l  = U Cy(rl,O)drl+u$UI for t U / I 9  1,  
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FIGURE 1. The dependence of the second longitudinal spatial moment S,, upon travel time for 
solute bodies of different initial transverse size 1,. Based on a numerical simulation of a single 
realization of the logconductivity and velocity fields (from Valocchi 1990, and Quinodoz & Valocchi 
1991). 

This result for the longitudinal dispersivity aL has been obtained using the 
Lagrangian approach by Dagan (1982 a, 1984, 1987) and with the aid of the Eulerian 
one by Gelhar & Axness (1983) and Neuman, Winter & Newman (1987), for different 
flow configurations and with the inclusion of the diffusive term. 

These derivations summarize the previously obtained results of relevance to the 
present study. It is emphasized that QL represents half the rate of change of the 
second spatial moment S,,, (4), only under ergodic conditions, i.e. for I / I  9 1. The 
tendency of S,, to  the ergodic limit is illustrated by the results of a numerical 
simulation (Valocchi 1990; Quinodoz & Valocchi 1991) shown in figure 1.  The 
authors have conducted a very detailed study : the conductivity was generated on a 
dense grid, with an exponential py = exp ( - r / I )  and with a$ = 0.5; the solute input 
zone was a line of dimension I ,  normal to the mean flow direction ; the velocity field 
was determined by solving numerically (l), (2) for boundary conditions of average 
uniform gradient, and transport has been simulated by tracking a large number of 
particles. The results pertain to  a single realization in which the ratio A, = 1,/I has 
been varied systematically. Figure 1 depicts the dependence of S,, of (4), the second 
spatial moment in the longitudinal direction of the particles cloud, upon time. The 
theoretical curve (Dagan 1982a) has the slope of its linear portion equal to 2g11 of 
(10). For the largest A, = 90, the agreement of (10) with the numerical simulations 
is seen to be quite good. 

3. Definition of effective dispersion coefficient for non-ergodic transport 
I n  the case in which 1/I is not large enough to warrant ergodicity, the spatial 

moments (4) of a plume in each realization may differ from their ensemble mean. This 
point is illustrated in figure 1 in which S,, is represented as function of time and for 
input zones A,, of I ,  = 0 and I ,  of diminishing magnitude, for the same realization of 
Y and u, It is seen that X,, may differ considerably from the result of (lo), though 
good agreement was obtained €or the largest A,. The salient question is how to 
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characterize transport and its uncertainty under such circumstances. Following 
Dagan (1989, 1990) we now regard R and S,  as random variables, represented by 
their statistical moments. Under the conditions enumerated above, the first two 
moments of the centroid longitudinal trajectory are given by 

(R,) = a, + Ut ; R,, = ((R, - (R)),) = 7 s /AoXll(t, b)da’da” (b  = a’-a”), 
A ,  

(11) 
where X,,( t ,  a‘, a”) = (X’( t ,  a ’ )X( t ,  a”))  is the covariance of the trajectories of two 
particles originating from two different points in A,. By the stationarity of the 
velocity field it is a function of b = a‘-a“ (see the next Section). 

In a similar manner the expected value of S,, from (4) is given by 

<Sll(t)> = Sll(0) +X,,(t, 0) --R,,(t, 1). (12) 
This simple and fundamental relationship, obtained by Kitanidis (1988) and by 

Dagan (1989,1990) by different methods, reads that X,,( t ,  0 ) ,  the trajectory variance 
with respect to the mean centroid, is equal to the sum of (S,,), the variance with 
respect to the realization centroid, and of R,,, the variance of the centroid trajectory. 
The ‘actual dispersion coefficient ’ D,, is defined by idS,,/dt and it is a random 
variable as well. The natural definition of the effective dispersion coefficient D,, is the 
expected value of D,,, i.e. by (12) 

Under the ergodic conditions mentioned above D,, --f Q,,. The tendency to 
ergodicity may be assessed with the aid of the ratio var (Sl~)/(Sll)z. Its computation 
in terms of X, becomes cumbersome, even if X is assumed to be Gaussian (Dagan 
1990). We shall pursue here only the computation of R,, and D,, and examine the 
tendency of the latter to gl1 in (10) as a measure of approaching ergodic conditions. 

After these preparatory steps we are in a position to define in precise terms the aim 
of the present study : we seek to derive expressions for R,, and D,, for large transport 
time Ut/I  b 1 in terms of the statistical parameters of Y ( ( Y ) , u & , I )  and of the 
lengthscale 1 of the input zone A,. This is achieved by using the first-order 
approximation in a$, which has served in the past to derive g,,, see (10). 

4. Computation of the effective longitudinal dispersion coefficient for non- 
ergodic transport 

We proceed now with the computation of D ,  = Dll( co, I), the asymptotic value of 
the longitudinal dispersion coefficient for a finite input zone of lengthscale 1. Since 
gl1 has already been evaluated (see (13)), the crux of the matter is to calculate 
dR,,/dt in (13). In turn, the latter is related to X,,( t ,  b) ,  the two-particle-trajectories 
covariance. From the first-order approximation (8) of X’, we get for the latter the 
general relationship 

i.e. 2 =. [ {u,[U(t- t ’ )  +b, ,  b,] +u,[V(t’-t) +b, ,  b , ] )  dt’ (i,j = 1,2). (14) 
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FIGURE 2. Sketch of motion of a solute body in steady flow. 

“, 1 . 0 0 ~  
(a) - 

t t = O  I I I I I 
2 4 6 8 1 0  

4 = 4 l I Y  

FIGURE 3. (a) Sketch of the motion of a thin solute body aligned with the mean flow, and (b )  the 
dependence of the second spatial moment LS~~(~~,Z,) upon the ratio A, = Z,/I (equations (21), (22)). 

Next, we select the input zone A ,  to be a rectangle defined by 0 < x1 < 1,,0 c 
x, < I , ,  as shown in figure 2. Substituting (14) into (1 1) gives the following expression 
of the effective dispersion tensor in (13) : 

-&j(Ut’ + b,, b,) -$ij( Ut’- b,, b,)] dt’db, db,. (15) 

I n  turn ut, is related to the logconductivity by (7) and substitution in (15) yields 
for D, = D,,, after integration over t and for t +co and i = j = 1,  

It is emphasized that the terms stemming from the derivatives of C,, and C, in 
(7) do not appear in (16) because the integration is up to t +co. Indeed, since C,, and 
aC,/ar, vanish for rl = 0 and rl -too and are antisymmetric in r,, they drop out from 
(16). For simplicity, we examine now separately the impact of the longitudinal 
dimension I ,  and of the transverse one I, upon D,, since they have a profoundly 
different influence. 

4.1. Thin body aligned with the mean flow direction (I, = 0) 
Such a body is depicted in figure 3(a) .  For 1, = 0, D, in (16) becomes 
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The integral over r in (17) is identically zero due to the symmetry of the 
autocorrelation py and we arrive at the unexpected result that the longitudinal 
dispersion coefficient D, = 0 for any finite I,. In  contrast, we obtain from (13) that 
the centroid variance is given by R,, +. 2 U 4  I t  for t +CO , i.e. the velocity randomness 
manifests in the uncertainty of R,. It is of interest to evaluate the variance of U, = 
dRl/dt, the velocity of the solute-body centroid. From (4) it  is easy to ascertain that 
it is equal to 

9, = ~~ ' ( l l -b l )u l l (b l ,O)db l .  ll 0 

The variance can be evaluated for any given py by substituting uI1 from (7) into 
(18). For large A, = Zl/I the result is 

It is seen therefore that the ratio of 9, to ( OJ2 = u2 tends to zero like 2a2,/Al for 
A, 9 1 and the exchange between the space average of the Lagrangian velocity and 
the Eulerian ensemble mean is then permissible. This is in agreement with a general 
result of Lumley (1962), which was proved, however, for a solute body of a 
unbounded spatial extent. 

The vanishing of D, does not imply that (Ell) does not change with time, sine D, 
is the limit of W,,/dt for t +CO. This can be shown by computing (Ell( CO, I,)) from 
(4), which is given in terms of X,, (14) as follows : 

(20) 
For ~ + C O  (20) reduces to the simple formula 

where Xll(b,/U, 0) is the one-particle-trajectory covariance (8) in which the argument 
t is replaced by b, /U.  X,, has been evaluated in a closed form for the exponential 
py = exp ( - r/I) (Dagan 1984, equation 4.5 and figure 1 a) and is reproduced here : 

where E is Euler constant and Ei is the exponential integral. (S,,!CO, I ) )  of (21) has 
been computed numerically for X,, and the result is represented in a dimensionless 
form in figure 3 ( b ) .  For the assumed shape of the initial solute body, E,,(O, I )  = h.4;. 
Figure 3(b) shows that the increase of the second-order spatial moment in terms of 
its initial value is quite modest. At any rate the effective dispersion coefficient has to 
grow from zero at t = 0 to a maximal value and to drop again to zero, as proved 
above. 

The result concerning D, can be interpreted by considering flow and transport 
under general conditions. Indeed, we refer now to a curvilinear thin initial solute 
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x1 

FIGURE 4. Sketch of the motion of a thin solute body transverse to the mean flow. 

body lying on a streamline of the steady velocity field. Let X ( t ,  a) be now the intrinsic 
coordinate of a particle a t  t which was at the curvilinear coordinate s = a at  t = 0.  
With I the initial length of the body, we have 1 = X ( 0 ,  1 )  -X(O, 0). The curvilinear 
length L a t  any time is therefore given by L = X ( t , l ) - X ( t , O ) ,  since the body 
preserves its continuity. The variance of the elongation L-1 is expressed by var 
(L -1 )  = ( [ X ( t ,  1) -X‘( t ,  0)12}, where X is the fluctuation of X ,  which is assumed to  
be a stationary random function of t .  The displacement X can be related to the 
Lagrangian velocity of the particle along the streamline by dX‘(t ,  a)/dt  = v(t, a). 
Now, owing to  the slteadiness of the Eulerian velocity the important relationship X ( t ,  
I )  = X ( t  - T ,  0) ,  is satisfied for t > T .  Here T is the time required for the trailing edge 
of the solute body to reach the initial location of the leading edge. This simple 
relationship shows that the motion of the two ends of the thin body become 
correlated for t > T. By using this relationship and assuming that v(t, 0) ,  is stationary 
and of covariance CJt), we get for the elongation 

var (L-1) = 2 (T- t ’ )C, ( t ’ )d t ’  ( t  > T ) ,  (23) loT 
which is fixed and does not depend on the time t .  Hence, the elongation of the thin, 
streamline-aligned, solute body grows in the mean for a while and then does not 
increase anymore, in agreement with the result found by the first-order analysis. 
Generally speaking, a diffusion process occurs when the various parts of the solute 
body move independently in a statistical sense, but this does not happen for a body 
of j h i t e  length, since the motion of each particle becomes identical to  the one 
preceding it after a fixed time lag, equal to T for the end points. The argument does 
not hold, of course, for the theoretical but unrealistic case of an infinite solute body, 
for which the ergodic argument applies. 

Summarizing this paragraph, we have found that for steady velocity fields and for 
a thin solute body aligned with a streamline, i.e. in the mean flow direction under the 
first-order approximation, the motion of the body centroid is subjected to  
uncertainty. In  contrast, the expected value of the second spatial moment increases 
from its initial value to an asymptotic, fixed one, which is attained in practice after 
a travel time t > 1JU. Since S,, is a random variable, its complete characterization 
is achieved by computing its statistical higher-order moments, but this task is not 
undertaken here. 

4.2. Thin body initially normal to the mean flow direction (11 = 0 ,  figure 
The general relationship (16) reduces now to 

4) 

(24) 
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It is easy to estimate the limit values of D ,  for A, + 0 and A, -+a, respectively, with 
A, = 12/I. Indeed, in the first case we get from (24) 

DL+~2,U~-lim~~~z(12-b2)py(r,0)drdb2] t*+o 2 0 0 = 0, 

where neglected terms are O(1:). This result is to be expected since a t  the limit A,+ 
0 the solute body degenerates into an indivisible particle. 

At  the other limit, A , + a ,  and for an integrable p y ,  we get from (24) 

D L + a , U [ , - f S " ~ ~ p y ( r , b 2 ) d l d ~ , ]  2 0  = a$ UI+O(I /A, )  

and D,  tends to the asymptotic limit g L ,  (10). Hence, unlike the elongated solute 
body, the transverse one tends to disperse according to the ergodic limit for a 
sufficiently large solute body. This is understandable in the light of the discussion of 
the preceding paragraph: particles making up the solute body which move along 
remote streamlines no longer have correlated trajectories. 

If we wish to follow the variation of D, for a fixed initial solute body, of fixed I , ,  
but for media of different I ,  it is appropriate to make D, dimensionless with respect 
to a$ UZ,. The dimensionless dispersion coefficient becomes a function of A, solely and 
it is seen from (25) and (26) that D,/a2, u1, tends to zero for both limits A2+0 and 
A,+cQ. Since D, is positive it follows that it must have a maximum. To grasp this 
result in quantitative terms we have considered two particular examples of 
logconductivity autocorrelation : the exponential py = exp ( - r / I )  and the Gaussian 
py = exp ( -nr2/4P).  The first one pertains to a medium made up from blocks of 
constant K, the slope of py at the origin being related to the specific interface area 
between blocks. The Gaussian py depicts a medium of continuous Y ,  with a sharp 
drop of the correlation with distance. 

The result of integration for the exponential pu in (26) is as follows: 

D L / ( 4  U2) = ~ ~ / ~ , ~ ~ ~ - ~ ~ ~ , ~ ~ , ~ ~ , ~ ~ , ~ + ~ , ~ ~ 2 ~ ~ 0 ~ ~ 2 ~ 1 - ~ ~ 2 ~ ~ 2 ~ + ~ / ~ ~ ~ ~  (27) 
where Kt and Li are modified Bessel and Struve functions, respectively (Abramowitz 
& Stegun 1965). Asymptotic results are as follows: 

DL + - - A , l n A ,  1 ( A , + O ) ;  - DL +L(i-t)  (A,+oo).  (28) 
a2,Ul, 12 4m2 A, 

Similarly, for the Gaussian py the integration in (26) yields 

The dimensionless dispersion coefficient is represented as function of 1 / A ,  for both 
cases (27) and (29) in figure 5 and the overall behaviour is similar. The different 
asymptotic results for A, + 0 can be attributed to the different structures of C ,  near 
r = 0. The striking result, however, is that D,/((r2, UZ,) reaches a maximum of around 
0.15 for A, % 2. Hence, the effective dispersion coefficient has an upper bound which 
depends only on I , ,  no matter how large I is. This result contradicts the intuitive one 
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FIQTJRE 5. The dependence of the effective dispersion coefficient D, on the ratio 1 / A ,  between the 
logconductivity integral scale Z and the solute body initial size 1, (full line (27) and dashed line (29)). 
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FIQURE 6. Same as figure 5, but with a different dimensionless representation of D,. 

based on inspection of the ergodic limit (lo), which is underlain however by the 
requirement A, S 1. This point is illustrated further in figure 6, in which we have 
rendered D,  dimensionless with respect to I ,  corresponding to  a given formation and 
a variable I , .  The ergodic limit DL/(a2yUI) = 1 of (10) is attained for l / h , + O .  
Adopting, for instance DJ(a2, UI)  = 0.99 as a criterion, we get from (28) and (29) 
A, x 300 and A, x 180, respectively. Again, this point is somewhat illustrated by 
figure 1, which is limited however to a single realization, whereas the above results 
are for expected values. An assessment of the uncertainty of S,, may be achieved by 
calculating its variance, but this task is not followed here. 

Summarizing this paragraph, we have found that for a solute body lying across the 
mean flow, the longitudinal asymptotic dispersion coefficient may reach its ergodic 
limit if A, = Z,/I is sufficiently large. However, for smaller values of A,, D,  decreases 
and is controlled by the body size rather than I .  since the sum d(S,,)/dt+dR,,/dt 
is constant (13), this means that the effect of velocity randomness manifests in the 
centroid trajectory to compensate for the reduction of D,. At the limit A,+O the 
body degenerates into an indivisible particle which obviously does not disperse at all. 
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5. Summary and conclusions 
The motion of a solute body by convective transport in a steady two-dimensional 

velocity field was investigated under a few simplifying conditions : stationary and 
isotropic logconductivity of finite integral scale and travel distance large compared 
to I .  The dispersion coefficient has been defined as half of the rate of change of the 
expected value of the solute-body second spatial moment around its centroid. The 
main objective was to determine the dependence of D, upon the parameters 
characterizing statistically the heterogeneous structure and the flow, and upon the 
size of the solute input zone. It was expected that the ergodic limit of D, will be 
reached for 19 I .  

The first main finding is that the longitudinal extent I , ,  in the mean flow direction 
does not influence D,, which tends to zero. Thus, ergodic conditions are not reached 
in such a case. This result could be explained a posteriori by realizing that the 
trajectories of the different particles making up the cloud are correlated, since they 
lie on the same streamline of the steady flow. 

The second main finding is D ,  may tend to the ergodic limit (.$ UI for an input zone 
lying in the transverse direction. However, if I ,  is not larger than I by two orders of 
magnitude, D ,  is smaller than the above limit and is controlled by 1, rather than by 
I .  This result suggests that for the case of a ‘point source’, i.e. of a cloud or plume 
of fixed I , ,  and for a formation of large heterogeneity correlation scale, the solute 
body will disperse modestly around its centroid. However, the centroid itself is 
subjected to a random motion of increasing uncertainty. 

The results of this study are underlain by the assumption of negligible transverse 
diffusive effects. This assumption may be justified by the smallness of the transverse 
pore-scale dispersivity or of the transverse macrodispersivity associated with local 
heterogeneity. Still, for a sufficiently large time for which the diffusive spreading 
mechanism across streamlines would ensure mixing over the velocity correlation 
scale, the transport will become again Fickian. Such a large limit may be, however, 
beyond the range of interest in application. This and many other issues of interest 
related to the present study deserve further investigations. A few examples are : the 
dependence of the spatial moments on travel time, the derivation of various 
statistical moments of the spatial moments, the impact of large logconductivity 
variance, reduction of uncertainty of spatial moments by conditioning on measured 
values and transport in formations of unbounded heterogeneity correlation scale. 
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